3.667 \(\int \frac{(d+e x)^{3/2} (f+g x)}{(a d e+(c d^2+a e^2) x+c d e x^2)^{3/2}} \, dx\)

Optimal. Leaf size=150 \[ -\frac{2 \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2} \left (2 a e^2 g-c d (d g+e f)\right )}{c^2 d^2 \sqrt{d+e x} \left (c d^2-a e^2\right )}-\frac{2 (d+e x)^{3/2} (c d f-a e g)}{c d \left (c d^2-a e^2\right ) \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}} \]

[Out]

(-2*(c*d*f - a*e*g)*(d + e*x)^(3/2))/(c*d*(c*d^2 - a*e^2)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]) - (2*(2
*a*e^2*g - c*d*(e*f + d*g))*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(c^2*d^2*(c*d^2 - a*e^2)*Sqrt[d + e*x
])

________________________________________________________________________________________

Rubi [A]  time = 0.143614, antiderivative size = 150, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 44, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.045, Rules used = {788, 648} \[ -\frac{2 \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2} \left (2 a e^2 g-c d (d g+e f)\right )}{c^2 d^2 \sqrt{d+e x} \left (c d^2-a e^2\right )}-\frac{2 (d+e x)^{3/2} (c d f-a e g)}{c d \left (c d^2-a e^2\right ) \sqrt{x \left (a e^2+c d^2\right )+a d e+c d e x^2}} \]

Antiderivative was successfully verified.

[In]

Int[((d + e*x)^(3/2)*(f + g*x))/(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2),x]

[Out]

(-2*(c*d*f - a*e*g)*(d + e*x)^(3/2))/(c*d*(c*d^2 - a*e^2)*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2]) - (2*(2
*a*e^2*g - c*d*(e*f + d*g))*Sqrt[a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2])/(c^2*d^2*(c*d^2 - a*e^2)*Sqrt[d + e*x
])

Rule 788

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp
[((g*(c*d - b*e) + c*e*f)*(d + e*x)^m*(a + b*x + c*x^2)^(p + 1))/(c*(p + 1)*(2*c*d - b*e)), x] - Dist[(e*(m*(g
*(c*d - b*e) + c*e*f) + e*(p + 1)*(2*c*f - b*g)))/(c*(p + 1)*(2*c*d - b*e)), Int[(d + e*x)^(m - 1)*(a + b*x +
c*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2,
 0] && LtQ[p, -1] && GtQ[m, 0]

Rule 648

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(d + e*x)^(m - 1)
*(a + b*x + c*x^2)^(p + 1))/(c*(p + 1)), x] /; FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c
*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + p, 0]

Rubi steps

\begin{align*} \int \frac{(d+e x)^{3/2} (f+g x)}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \, dx &=-\frac{2 (c d f-a e g) (d+e x)^{3/2}}{c d \left (c d^2-a e^2\right ) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}+\frac{\left (2 \left (-\frac{1}{2} e \left (2 c d e f-\left (c d^2+a e^2\right ) g\right )+\frac{3}{2} \left (c d e^2 f+\left (c d^2 e-e \left (c d^2+a e^2\right )\right ) g\right )\right )\right ) \int \frac{\sqrt{d+e x}}{\sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}} \, dx}{c d \left (2 c d^2 e-e \left (c d^2+a e^2\right )\right )}\\ &=-\frac{2 (c d f-a e g) (d+e x)^{3/2}}{c d \left (c d^2-a e^2\right ) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}-\frac{2 \left (2 a e^2 g-c d (e f+d g)\right ) \sqrt{a d e+\left (c d^2+a e^2\right ) x+c d e x^2}}{c^2 d^2 \left (c d^2-a e^2\right ) \sqrt{d+e x}}\\ \end{align*}

Mathematica [A]  time = 0.0438532, size = 51, normalized size = 0.34 \[ \frac{2 \sqrt{d+e x} (2 a e g+c d (g x-f))}{c^2 d^2 \sqrt{(d+e x) (a e+c d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[((d + e*x)^(3/2)*(f + g*x))/(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2),x]

[Out]

(2*Sqrt[d + e*x]*(2*a*e*g + c*d*(-f + g*x)))/(c^2*d^2*Sqrt[(a*e + c*d*x)*(d + e*x)])

________________________________________________________________________________________

Maple [A]  time = 0.046, size = 66, normalized size = 0.4 \begin{align*} 2\,{\frac{ \left ( cdx+ae \right ) \left ( xcdg+2\,aeg-cdf \right ) \left ( ex+d \right ) ^{3/2}}{{c}^{2}{d}^{2} \left ( cde{x}^{2}+a{e}^{2}x+c{d}^{2}x+ade \right ) ^{3/2}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x+d)^(3/2)*(g*x+f)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x)

[Out]

2*(c*d*x+a*e)*(c*d*g*x+2*a*e*g-c*d*f)*(e*x+d)^(3/2)/c^2/d^2/(c*d*e*x^2+a*e^2*x+c*d^2*x+a*d*e)^(3/2)

________________________________________________________________________________________

Maxima [A]  time = 1.42288, size = 65, normalized size = 0.43 \begin{align*} -\frac{2 \, f}{\sqrt{c d x + a e} c d} + \frac{2 \,{\left (c d x + 2 \, a e\right )} g}{\sqrt{c d x + a e} c^{2} d^{2}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(3/2)*(g*x+f)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x, algorithm="maxima")

[Out]

-2*f/(sqrt(c*d*x + a*e)*c*d) + 2*(c*d*x + 2*a*e)*g/(sqrt(c*d*x + a*e)*c^2*d^2)

________________________________________________________________________________________

Fricas [A]  time = 1.59341, size = 201, normalized size = 1.34 \begin{align*} \frac{2 \, \sqrt{c d e x^{2} + a d e +{\left (c d^{2} + a e^{2}\right )} x}{\left (c d g x - c d f + 2 \, a e g\right )} \sqrt{e x + d}}{c^{3} d^{3} e x^{2} + a c^{2} d^{3} e +{\left (c^{3} d^{4} + a c^{2} d^{2} e^{2}\right )} x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(3/2)*(g*x+f)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x, algorithm="fricas")

[Out]

2*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*(c*d*g*x - c*d*f + 2*a*e*g)*sqrt(e*x + d)/(c^3*d^3*e*x^2 + a*c^2
*d^3*e + (c^3*d^4 + a*c^2*d^2*e^2)*x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)**(3/2)*(g*x+f)/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \mathit{sage}_{0} x \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x+d)^(3/2)*(g*x+f)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2),x, algorithm="giac")

[Out]

sage0*x